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Abstract. Runoff is a critical component of the terrestrial
water cycle, and Earth system models (ESMs) are essential
tools to study its spatiotemporal variability. Runoff schemes
in ESMs typically include many parameters so that model
calibration is necessary to improve the accuracy of simu-
lated runoff. However, runoff calibration at a global scale
is challenging because of the high computational cost and
the lack of reliable observational datasets. In this study, we
calibrated 11 runoff relevant parameters in the Energy Exas-
cale Earth System Model (E3SM) Land Model (ELM) using
a surrogate-assisted Bayesian framework. First, the polyno-
mial chaos expansion machinery with Bayesian compressed
sensing is used to construct computationally inexpensive sur-
rogate models for ELM-simulated runoff at 0.5◦× 0.5◦ for
1991–2010. The error metric between the ELM simulations
and the benchmark data is selected to construct the surro-
gates, which facilitates efficient calibration and avoids the
more conventional, but challenging, construction of high-
dimensional surrogates for the ELM simulated runoff. Sec-
ond, the Sobol’ index sensitivity analysis is performed us-
ing the surrogate models to identify the most sensitive pa-
rameters, and our results show that, in most regions, ELM-
simulated runoff is strongly sensitive to 3 of the 11 uncer-
tain parameters. Third, a Bayesian method is used to infer
the optimal values of the most sensitive parameters using an
observation-based global runoff dataset as the benchmark.
Our results show that model performance is significantly
improved with the inferred parameter values. Although the
parametric uncertainty of simulated runoff is reduced after
the parameter inference, it remains comparable to the multi-
model ensemble uncertainty represented by the global hydro-

logical models in ISMIP2a. Additionally, the annual global
runoff trend during the simulation period is not well con-
strained by the inferred parameter values, suggesting the im-
portance of including parametric uncertainty in future runoff
projections.

1 Introduction

Runoff is an essential source of freshwater, and its variabil-
ity has profound socioeconomic impacts (Hall et al., 2014;
Vörösmarty et al., 2000). Flooding in wet regions during
peak streamflow is among the most impactful natural haz-
ards of all weather-related events in terms of fatalities and
material costs (Doocy et al., 2013). However, higher stream-
flow replenishes reservoirs that help provide water for agri-
culture and hydropower generation and transports nutrients
to the floodplain. Drought is a form of hydrological extreme
that can also result in immense damages to the ecosystem
and agriculture (Mishra and Singh, 2010). It is associated
with abnormally low runoff, especially in arid and semi-arid
regions. Therefore, understanding the spatial and temporal
patterns of runoff is crucial for flood control, water manage-
ment, crop yield, ecosystem services, etc. The runoff vari-
ability has been impacted by human-induced land use and
climate change (Milly et al., 2008; Fischer and Knutti, 2016;
Bosmans et al., 2017; Dai, 2013; Xu et al., 2021a), and the
changes are projected to be more significant towards the end
of this century (Xu et al., 2021a).
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The spatial and temporal patterns of runoff and its re-
sponse to climate change for water security assessments and
water management are commonly studied using Earth system
models (ESMs; Milly et al., 2002; Hirabayashi et al., 2013;
Schewe et al., 2014). Current generation ESMs have large
uncertainty in the simulation of runoff and its changes un-
der future scenarios. However, statistical methods have been
applied recently to reduce uncertainty in model predictions
(Yang et al., 2017; Gosling and Arnell, 2011; Lehner et al.,
2019; Xu et al., 2021a). Uncertainties in ESM simulations of
runoff stem from uncertain model inputs, model structural
uncertainty, and parametric uncertainty (Sun et al., 2013;
Giuntoli et al., 2018). Input uncertainties consist of uncer-
tainties in atmospheric forcing and land surface cover data
that can be reduced by improving observation quality as more
data become available. Model structural uncertainty is due to
knowledge gaps or simplifications of the physical processes
of the Earth system. Specifically, the typical coarse resolution
(∼ 100 km) of ESMs cannot capture a few of the key physical
factors that control runoff-generation processes such as ter-
rain and soil variations. Downscaling methods have been de-
veloped to reduce model bias when projecting the changes in
hydrological variables from the coarse resolution ESM sim-
ulation to a fine resolution (Tebaldi et al., 2005; Knutti et al.,
2010; Xu et al., 2019). Recent development in the Energy
Exascale Earth System Model (E3SM) has introduced a sub-
grid topography-based downscaling of precipitation (Tesfa et
al., 2020) to understand the role of topography in hydrolog-
ical processes. Over the past few decades, the land compo-
nent of ESMs has continuously been improved by develop-
ing new representations of physical processes, such as imple-
menting variable soil thickness (Brunke et al., 2016), solving
the variably saturated flow in groundwater dynamics (Bisht
et al., 2018), including land–river interactions (Decharme
et al., 2019; Xu et al., 2021b), representing lateral subsur-
face flow (Swenson et al., 2019), and increasing spatial res-
olution (Haarsma et al., 2016). While these advances im-
prove our understanding of the Earth system, they may not
lead to reduced uncertainties in future projections (Knutti
and Sedláèek, 2012; Lehner et al., 2020). This is because
parametric uncertainty may increase as new processes are
included in the model. The uncertainty in ESM simulated
runoff must be reduced before reliable conclusions can be
drawn regarding ESM projections of future changes in the
runoff characteristics.

The parametric uncertainties in simulated runoff can be
reduced by model calibration (Gupta et al., 1998). Previous
studies have shown that it is possible to constrain the uncer-
tainty of runoff by calibrating the relevant model parameters
at a regional scale (Ray et al., 2015; Sun et al., 2013; Sheng
et al., 2017; Xie et al., 2007; Troy et al., 2008; Hou et al.,
2012; Huang et al., 2013). Hou et al. (2012) and Huang et
al. (2013) identified the most sensitive hydrologic parame-
ters of the Community Land Model (CLM) for simulating
runoff and surface energy fluxes at a few selected watersheds

and flux tower sites in the USA. They found that reducing
the dimensionality of uncertain parameters using sensitivity
analysis speeds up the calibration processes (Huang et al.,
2013). Consequently, Sun et al. (2013) successfully applied
a Bayesian inversion approach to estimate the optimal pa-
rameters to improve the performance of runoff generation
in CLM. Troy et al. (2008) proposed an efficient framework
to calibrate the Variable Infiltration Capacity (VIC) model
for the contiguous USA by interpolating the calibrated pa-
rameters from small gauged basins. While previous studies
performed comprehensive model calibration of runoff at re-
gional scales, it remains challenging to calibrate the land
components of ESM at global scales due to (1) the lack of
runoff observations and (2) the high computational cost of
running a large ensemble of global land model simulations.
For (1), it is common to validate land models with streamflow
(i.e., flow rate accumulated from runoff within a drainage
area) observation (Li et al., 2015; Krysanova et al., 2020;
Beck et al., 2017; Zhang et al., 2016), as runoff is not directly
measured. However, routing the runoff to simulate stream-
flow at a coarse resolution introduces additional uncertain-
ties due to the representation of the stream network (Wu
et al., 2011; Liao et al., 2022) and river channel geometry
(Andreadis et al., 2013). A recent observation-based global
runoff dataset (GRUN; Ghiggi et al., 2019a) provides a good
benchmark for calibrating runoff-generation-related parame-
ters without the need of coupling the land model with a river-
routing model. For (2), tens of thousands of simulations are
typically needed for parameter calibration when the parame-
ter dimension is high, but it is not computationally feasible to
run a large ensemble of ESM simulations at the global scale.

The computational cost of model calibration can be sig-
nificantly reduced by using an Uncertainty Quantification
(UQ) framework that develops surrogate models of com-
plex physical models. UQ frameworks include the following
steps: (1) construction of a surrogate model that can mimic
the behavior of a physical model, (2) identification of sen-
sitive parameters to reduce the dimensionality of uncertain
parameters, and (3) use of the parameter inference process to
constrain the parametric uncertainty by comparing surrogate
model prediction against observation. The surrogate model-
ing approach has received wide attention in hydrological ap-
plications (Razavi et al., 2012; Ivanov et al., 2021; Wang et
al., 2014) to calibrate large-scale land models in terms of dif-
ferent hydrological processes (Gong et al., 2015; Lu et al.,
2018; Müller et al., 2015; Huang et al., 2016; Ray et al.,
2015; Sargsyan et al., 2014; Ricciuto et al., 2018). Multi-
ple methods falling into the class of surrogate models in-
clude Gaussian process models, artificial neural networks,
support vector machines, and polynomial chaos expansions
(PCEs). In this study, we rely on PCEs as convenient machin-
ery for uncertain input parameter representation and surro-
gate construction. The PCE surrogate captures the complex,
nonlinear behavior of the physical model through a learned
polynomial expansion. This method also provides convenient
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global sensitivity analysis (Dwelle et al., 2019). Furthermore,
we employ Bayesian compressive sensing (BCS) to arrive at
sparse PCEs that include only polynomial terms relevant to
the model, thus facilitating PCE surrogate construction in the
presence of a large number of uncertain inputs and a rela-
tively small number of model simulations (Sargsyan et al.,
2014). Once the surrogate model is constructed, it replaces
the expensive physical model in simulation-intensive studies
such as global sensitivity analysis and parameter inference.

The objective of this work is to use the UQ framework to
improve the performance of runoff generation at a monthly
scale and quantify the associated parametric uncertainty in
the E3SM Land Model version 1 (ELM v1; E3SM; Go-
laz et al., 2019). This study is organized in the following
manner. We briefly describe the runoff-generation process
in ELM v1, the UQ framework, and the data used in this
study in Sects. 2, 3, and 4, respectively. In Sect. 5, we first
present the validation of the surrogate models, sensitivity of
simulated runoff to the uncertain parameters, dimensional
reduction of uncertain parameters, and estimation of opti-
mal parameters. Then we evaluate the performance of ELM-
simulated runoff with the optimal parameters, the runoff sen-
sitivity to precipitation, and the changes due to the use of
optimal parameters on ELM-simulated water- and energy-
related variables against various benchmarks using the In-
ternational Land Model Benchmarking (ILAMB) package
(Collier et al., 2018). Last, we present the simulated runoff
uncertainty associated with parameters and theirs impacts on
runoff trends at global scale. Section 6 discusses the limita-
tions of this work, followed by the conclusions in Sect. 7.

2 E3SM Land Model

2.1 Runoff-generation scheme in ELM v1

The ELM v1(hereafter, v1 is omitted) was developed based
on the Community Land Model 4.5 (CLM4.5; Oleson et al.,
2013) to understand the water availability and water cycle
extremes (Leung et al., 2020). The new physical processes
added in ELM to better represent the terrestrial water cy-
cle include a variably saturated flow model (Bisht et al.,
2018), a soil erosion model (Tan et al., 2020), dynamic roots
(Drewniak, 2019), and a two-way coupled irrigation scheme
(Zhou et al., 2020). The runoff generation in ELM is based
on the simple TOPMODEL-based runoff parameterization
(SIMTOP; Niu et al., 2005) in which the total runoff (Rtotal)
consists of the following three components: surface runoff
(Rover; e.g., saturation excess runoff), surface water runoff
(Rh2osfc; e.g., surface water drainage from depressions/wet-
lands), and subsurface runoff (Rdrai), as seen in the follow-
ing:

Rtotal = Rover+Rh2osfc+Rdrai. (1)

A fraction of the flux of water reaching the soil surface (qliq)
generates surface runoff, and the fraction is determined by
the saturation fraction (fsat) of the grid cell as follows:

Rover = fsatqliq (2)
fsat = fmax exp(−0.5foverz∇) , (3)

where fmax represents the maximum saturation fraction for
a given grid cell that is calculated with high-resolution com-
pound topographic indices, fover is a decay factor, and z∇ is
the water table depth.

ELM includes surface water storage to represent in-
land/wetland surface water dynamics (Ekici et al., 2019).
When the surface water storage is fully filled, surface water
runoff is generated as follows:

Rh2osfc = kh2osfcfconnected (Wsfc−Wc)
1
1t
, (4)

where kh2osfc represents the linear storage coefficient,
fconnected is the interconnected fraction of the inundated ar-
eas, Wsfc is the mass of surface water, Wc is the mass of sur-
face water when the storage is full, and 1t is the model time
step. Wsfc is formulated as follows:

Wsfc =
d

2

(
1+ erf

(
d

σmicro
√

2

))
+
σmicro
√

2π
e

−d2

2σ2
micro , (5)

where erf represents the error function, d is the height of
the surface water relative to the cell averaged elevation, and
σmicro is the standard deviation of the microtopographic dis-
tribution that characterizes subgrid elevation variation. Given
the surface water height from the previous equation, the sur-
face water fraction (fh2osfc) of a cell is estimated with the
following:

fh2osfc =
1
2

(
1+ erf

(
d

σmicro
√

2

))
. (6)

The inundation areas are assumed to be randomly dis-
tributed within the grid cell, and the interconnected fraction
of the inundated areas can be estimated based on percolation
theory, as follows:

fconnected =

{
(fh2osfc− fc)

µ if fh2osfc > fc
0, if fh2osfc ≤ fc

, (7)

where fc is the threshold below which the inundated areas
are not connected, and µ is a scaling exponent. The default
parameter values in ELM of fc and µ are 0.4 and 0.14 for all
the global cells, respectively.

The subsurface runoff is parameterized as an exponential
function of water table depth and includes an ice impedance
factor (2ice) to account for the reduction in the bottom
drainage when ice is present in the soil (Swenson et al.,
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2012), as follows:

Rdrai =2iceqdrai,max exp(−fdraiz∇) (8)

2ice = 10−�
θice
θsat , (9)

where qdrai,max is the maximum drainage rate, fdrai is the de-
cay factor, θice

θsat
represents the ice-filled fraction of the pore

space for the soil under the water table, and� is an adjustable
parameter.

We follow the work of Huang et al. (2013) in selecting un-
certain parameters and their corresponding ranges (Table 1).
There are three additional parameters included in this study
for surface water storage drainage and impacts of ice to sub-
surface runoff and soil water dynamics, which represent new
features in ELM compared to CLM4.0 used in Huang et
al. (2013). All the parameter prior distributions are assumed
to be a uniform distribution.

2.2 Model configuration

We ran ELM globally at a spatial resolution of 0.5◦× 0.5◦,
driven by the Global Soil Wetness Project forcing dataset
(GSWP3v1) from 1991 to 2010, featuring 3 h, 0.5◦× 0.5◦

global atmosphere forcing. GSWP3v1 has been dynamically
downscaled and bias corrected based on the reanalysis data of
Compo et al. (2011). The default configuration of ELM was
used with a 30 min time step. With the default configuration,
the hydrologic representations of ELM are the same as those
in CLM4.5, as new model features such as the variably sat-
urated flow model and subgrid topography are not included.
Except the uncertain parameters listed in Table 1, the default
values of all other ELM parameters were used in this study.

3 Uncertainty Quantification framework

A detailed derivation of the PCE-based Uncertainty Quan-
tification framework and BCS method used in this work
is presented in Sargsyan et al. (2014) and Debusschere et
al. (2016). In this study, we used the Uncertainty Quantifi-
cation Toolkit (UQTk; Debusschere et al., 2004, 2016) that
includes implementations of PCE construction with BCS and
subsequent global sensitivity analysis. Only a brief descrip-
tion of the construction of the PCE-based surrogate for the
ELM simulations is summarized below.

3.1 Polynomial chaos expansion

Let M denote a physical model (e.g., ELM) with uncertain
parameters X, where X= [X1, X2, . . ., XD], and D repre-
sents the total number of uncertain parameters. In this study,
the uncertain parameters X are listed in Table 1 and D is 11.
A scalar quantity of interest (QoI), ŷ (e.g., runoff at a speci-
fied time from a specified location), obtained using a sample
of random parameters, x, can be expressed as a polynomial

expansion, as follows:

ŷ =M(x)=
∑
α

cα9α(x), (10)

where 9α is a polynomial, and cα is the corresponding coef-
ficient. In practice, x is scaled to [−1, 1] from the original un-
certainty input range. The polynomial expansion in Eq. (10)
is written, with respect to multivariate orthogonal polynomi-
als, as follows:

9α(x)=

D∏
i=1
9αi (xi) , (11)

where 9αi (xi) is a univariate polynomial, whose form is as-
sociated with the prior distribution of uncertain input vari-
able Xi (e.g., Legendre polynomials are used when the input
variable follows a uniform distribution), and αi is a mem-
ber of the multi-index α = [α1, α2, . . ., αD], which repre-
sents the degrees of the univariate polynomial terms. Read-
ers should refer to Dwelle et al. (2019) for details about
the selection of polynomial terms and an illustration of how
the multi-index is used to construct a PCE-based surrogate.
In practice, Eq. (11) is approximated with a truncated PCE
by only selecting terms with a total degree of polynomi-
als smaller than a certain value p (Xiu and Karniadakis,
2002; Lin and Karniadakis, 2009). This leads to a finite set
Ap = (α :

∑D
i=1αi ≤ p) for the multi-index α to take the fol-

lowing:

M(x)≈MPC (x)=
∑
α∈Ap

cα9α (x)=

P∑
j=0

cj9j (x) , (12)

where j represents the counter-index of any possible multi-
index α in Ap in a predefined order (see details in Ap-
pendix B of Dwelle et al., 2019). The coefficients (cj ) for
the P +1 polynomial bases are computed using training sim-
ulations ofM(x) (e.g., ELM) to construct the truncated PCE
approximation in Eq. (12). The number of the polynomial
basis is determined by both the input dimension D and the
total degree for truncation p (Xiu and Karniadakis, 2002) is
as follows:

P + 1=
(D+p) !

D!p!
. (13)

The value P increases rapidly as the number of uncertainty
input variables increases. For example, 11 uncertain parame-
ters (e.g., D = 11) with a truncated PCE order of p = 4 lead
to 1365 coefficients to solve in Eq. (12). It is computation-
ally prohibitive to run 1365 global ELM simulations, so we
adopted the BCS method of Sargsyan et al. (2014) that re-
quires a much smaller number of ELM simulations to con-
struct a PCE-based surrogate. The BCS method computes
only a sparse set of cj to construct the surrogate of a form
given by Eq. (12) because not all 9j (x) are relevant for the
given QoI (Sargsyan et al., 2014).
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Table 1. Uncertain parameters’ information. Note: DEM is for digital elevation model.

Parameter Definition Default value Priors

fmax Maximum saturated fraction for a grid cell
(–)

Derived from a high-resolution DEM. U(0.01,0.907)

fover Decay factor for surface runoff
(m−1)

0.5 U(0.1, 5)

fdrai Decay factor for subsurface runoff
(m−1)

2.5 U(0.1, 5)

qdrai,max Maximum subsurface drainage rate
(kg m−2 s−1)

5.5× 10−3 U(1× 10−6, 1× 10−1)

b Clapp–Hornberger exponent
(–)

Determined by plugging the soil type into
the equations of means from Table 5 of
Cosby et al. (1984).

Uniform distributions with
±50 % of the means as the
lower and upper bounds.

ψs Saturated soil matrix potential
(mm)

Ks Hydraulic conductivity
(mm s−1)

θs Porosity
(–)

fc Surface water fraction threshold for outflow
(–)

0.4 U(0.1, 0.7)

µ Scaling exponent for estimating connected sur-
face water fraction
(–)

0.14 U(0.04, 0.24)

� Adjustable parameter for ice impedance factor
(–)

6 U(0.6, 60)

3.2 Global sensitivity analysis

In this study, we performed variance-based, global sensitiv-
ity analysis using Sobol’ indices (Sobol’, 2001). For a PCE-
based surrogate model, the main Sobol’ index, Si , for the
uncertain parameter Xi can be estimated as follows:

Si =

∑
j∈5i

c2
j ||9j ||

2∑P
j=0 c

2
j ||9j ||

2
, (14)

where 5i denotes all the indices of polynomial basis terms
in Eq. (12) that only involve parameter Xi , and ||9j || is the
norm of the polynomial 9j (x). The main Sobol’ index Si
can be interpreted as the fraction of variance in the output that
is associated with the uncertainty model parameter Xi only
when other parameters are fixed at constant values. Similarly,
one can estimate the Sobol’ index for any pair of parameters
Xi andXi′ to represent parameter interaction sensitivity with
the coefficients cj (Sargsyan et al., 2014).

3.3 Parameter inference

Parameter inference is used to determine a set of model
parameters that reduces the error between observation and
model prediction. The model inverse problem can be solved
with the Bayes’ theorem, as follows:

p(X|y)=
L(y|X)p(X)

p(y)
, (15)

where p(X|y) is the posterior distribution of parameter X
given observation y, L(y|X) is the likelihood function, p(X)
represents the prior distribution of X, and p(y) is merely a
normalizing constant for the purposes of parameter calibra-
tion. The discrepancy between the model and observations,
ε = y− M(X), should be included in the likelihood func-
tion. It is common to assume the error term (e.g., ε) follows
a Gaussian distribution with a vanishing mean:

εi ∼N
(

0,σ 2
)
, i = 1, 2, . . ., N, (16)

where N is the number of observations used to infer the
parameters (e.g., time series of monthly runoff), and the
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standard deviation, σ , can be inferred from the data (see
Sect. 3.4). Then, the likelihood function can be written as
follows:

L(y|X)=
N∏
i=1

1
√

2πσ 2
exp

[
−
(yi − Mi (X))2

2σ 2

]
. (17)

The logarithm of Eq. (17) leads to the least squares objective
function that is used for deterministic parameter estimation
in practice (Sargsyan et al., 2015), as follows:

logL(y|X)= −
N∑
i=1

(yi −Mi (X))2

2σ 2 −
N

2
log(2πσ 2). (18)

The posterior distribution in Eq. (18) is difficult to compute
in practice; hence, we estimate it through samples obtained
by the Markov Chain Monte Carlo (MCMC) method. Specif-
ically, 1000 iterations are used as the burn-in period in this
study, and the sampling of the posterior distribution is saved
every 10 iterations. We run MCMC for 10 000 steps, result-
ing in 1800 samples to construct the posterior distribution.
We have employed adaptive MCMC method of Haario et
al. (2001), in which the parameter space is searched accord-
ing to proposal steps with a covariance that is updated spon-
taneously.

3.4 Quantity of interest

In this study, the physical model M and the QoI ŷ corre-
spond to ELM and runoff, respectively. The development of
a surrogate model for the simulated runoff for each grid cell
for each month of a 20-year simulation would require 240
(= 12 months× 20 years) PCE-based surrogates. Although
developing a PCE-based surrogate is not expensive, it is com-
putationally expensive to train 240 PCEs for each of the
70 302 grid cells in the global domain. The parameter infer-
ence process for 240 PCEs for each grid cell will further in-
crease the computational cost. We reduce the number of QoIs
by training the surrogate model for the root mean square er-
ror (RMSE) between the simulated runoff and observations
instead of training the surrogate model to predict monthly
runoff. The RMSE is given as follows:

RMSE=

√
1
N

∑N

i=1

(
Rsim
i −R

obs
i

)2
, (19)

where Rsim
i and Robs

i represent the grid-level simulated total
runoff and observed total runoff, respectively, for ith month
in the simulated period, andN represents the number of sim-
ulation months. Consequently, only one surrogate model is
needed for each grid cell to quantify the performance of ELM
in capturing the monthly runoff variation for a given uncer-
tain parameter set. The selection of RMSE as QoI in con-
structing surrogate models significantly reduces the compu-
tational burden of the surrogates’ construction and parameter

inference. We performed ELM simulations using 200 param-
eter sets that were randomly sampled from the range speci-
fied in Table 1. A set of 175 ELM simulations were used
for training the surrogate models, and the other 25 simula-
tions were used for validating their performances. The per-
formance of the PCE-based surrogate model can be affected
by the truncated order (Dwelle et al., 2019). For each grid
cell, we train the surrogate with p = 1, 2, . . ., 7 separately
and picked the order that minimizes the relative norm 2 error
(RE) of validation simulations as follows:

RE=

∣∣|RMSEPC
val −RMSEMval|

∣∣
2∣∣|RMSEMval|

∣∣
2

, (20)

where RMSEPC
val and RMSEMval represent the PCE-simulated

and ELM-simulated vector of RMSE of the 25 validation
simulations, respectively. Then, the trained surrogate mod-
els, RMSEPC, can be plugged into the likelihood function of
Eq. (18) seamlessly, as follows:

logL(y|X)= −
N ·

(
0−RMSEPC)2

2σ 2 −
N

2
log(2πσ 2). (21)

The standard deviation of error between model simulated
runoff and observation exhibits a significant monthly vari-
ation. To provide a reasonable value of σ , we further assume
σ in Eq. (21) has a different meaning than that in Eq. (18) by
taking RMSE as model simulation, and 0 as the target. There-
fore, σ is approximated as the standard deviation of the dif-
ference between 0 and RMSEs, where each RMSE was cal-
culated using simulated runoff and observation for a given
training simulation. Our estimation of σ leads to a reason-
able posterior (see Sect. 5.4), though other methods can also
be used to estimate σ . We acknowledge that the value of σ
may have an impact on the parameter posteriors, but inves-
tigating the sensitivity of σ on the posteriors is beyond the
scope of this study.

3.5 Calibration procedure

In summary, the following procedures were implemented to
determine the optimal parameter values and their joint prob-
ability distribution:

1. Run ELM with 200 parameter sets randomly sampled
with the range specified in Table 1.

2. Construct PCE-based surrogate models to mimic the
RMSE between the ELM and GRUN runoff dataset with
175 simulations and validate the performance of the sur-
rogate models with the other 25 simulations.

3. Implement sensitivity analysis with the surrogate mod-
els to reduce parameter dimensionality for calibration
by ignoring the parameters with negligible Sobol’ index
(e.g., less than 0.05).
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4. Estimate the Bayesian posterior of the most sensitive
parameters for each grid through MCMC process with
the runoff dataset of Ghiggi et al. (2019a).

It has been shown that small surrogate error can result
in significant deviation of the inferred parameter (Laloy and
Jacques, 2019). To further search the optimal parameters and
construct the runoff posterior uncertainty, we ran ELM sim-
ulations with additional 100 samples from the posteriors of
the three most sensitive parameters for all global grid cells,
and default values were used for less sensitive parameters.

The parameters with the minimum RMSE between simu-
lations and reference runoff data from the 100 ELM simu-
lations were determined as the optimal parameter value for
each grid cell.

4 Data

4.1 Observation-based runoff data

The 0.5◦× 0.5◦ observation-based global runoff dataset
(GRUN) dataset of Ghiggi et al. (2019a) was used in this
study as the observation within the calibration framework
for parameter inference. The GRUN dataset was generated
from a trained random forest (RF) model (Breiman, 2001)
that used precipitation and near-surface temperature to pre-
dict monthly runoff. The training runoff data were derived
from the Global Streamflow Indices and Metadata Archive
(GSIM; Gudmundsson et al., 2018; Do et al., 2018), and only
the gauges with contributing area comparable to cell area
of 0.5◦× 0.5◦ were used. GSWP3 atmospheric forcing was
used for training and reconstruction of the monthly global
runoff.

4.2 Model benchmarks

The ILAMB package (Collier et al., 2018) was used to evalu-
ate the simulated water and energy cycles from the calibrated
ELM against various benchmarks. Specifically, a gridded en-
ergy flux data (FLUXCOM; Jung et al., 2019) that was gener-
ated by machine learning with flux tower measurements was
used to evaluate latent and sensible heat fluxes, the Global
Land Evaporation Amsterdam Model version 3 (GLEAMv3;
Martens et al., 2017) product was used to evaluate global
evapotranspiration (ET), and Gravity Recovery And Climate
Experiment (GRACE; Kim et al., 2009) data were used to
evaluate a terrestrial water storage anomaly (TWSA). De-
tails about ILAMB can be found at https://www.ilamb.org
(last access: 23 June 2021).

The Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) archived simulations from multiple global hydro-
logical models and land surface model forced by the same
atmosphere forcings (Warszawski et al., 2014). We used
13 available models from the second-phase water sector
(ISIMIP2a; Gosling et al., 2019) to provide a benchmark for

the uncertainty of annual runoff magnitude and trend. Only
the models in ISIMPI2a that were driven by the GSWP3 forc-
ing without accounting for human activity impacts were se-
lected here to be consistent with ELM’s configuration.

4.3 Evaluation metrics

There were two metrics used to evaluate ELM’s perfor-
mance of simulating runoff at a monthly scale with calibrated
parameters, including the Nash–Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970) and the Kling–Gupta efficiency
(KGE; Gupta et al., 2009) which are computed as follows:

NSE= 1−

∑N
i=1
(
Rsim
i −R

obs
i

)2∑N
i=1
(
Robs
i −µobs

)2 (22)

KGE= 1−

√
(ρ− 1)2+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

, (23)

where Rsim
i and Robs

i represent cell-level simulated total
runoff and observed total runoff, respectively, for the ith
month, µobs is the corresponding averaged observation, ρ
is the correlation coefficient between simulation and obser-
vation, σsim is the standard deviation in simulations, σobs is
the standard deviation in observations, and µsim is the sim-
ulation mean. Both NSE and KGE vary from −∞ to 1, and
a perfect model performance is indicated by NSE= 1 and
KGE= 1. NSE< 0 and KGE<−0.41 mean the simulations
are worse estimates than the mean of observations, indicating
a bad model performance (Knoben et al., 2019).

The sensitivity of runoff to precipitation is a critical as-
pect for runoff simulation evaluation, considering changes in
precipitation will continue in the future (Trenberth, 2011).
Therefore, we evaluated the sensitivity of runoff to the pre-
cipitation anomalies with the calibrated parameters. The sen-
sitivity was quantified by the slope of linear regression (β)
between runoff anomalies (1R) and precipitation anomalies
(1P ) as follows:

1R = β1P + ε. (24)

The interception ε ≈ 0, implies the mean runoff is related to
mean precipitation.

We also evaluated the impacts of parameters on the runoff
trend. Specifically, the magnitude of runoff trend was calcu-
lated with Sen’s slope (Sen, 1968), which is nonparametric
and not sensitive to the outliers. Then, Mann–Kendall test
was used to determine if the trend is significant or not at con-
fidence level α = 0.05.

5 Results

5.1 Refinement of fdrai for arid regions

The proposed prior for fdrai is not suitable for all the climate
regions, such as the simulations with the full the range of
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Figure 1. Validation of surrogate performance for an example grid cell from an arid region. Panel (a) shows runoff seasonality from all 200
simulations with samples from parameter priors. Panel (b) shows the validation of the surrogate model trained with original ranges of fdrai
given in Table 1 in the main text. Panel (c) shows the validation of the surrogate model trained with constrained fdrai.

fdrai defined in Table 1 results in unrealistic runoff for arid
regions. For example, the simulated runoff from an exam-
ple grid cell with fdrai < 0.4 shows higher magnitudes and
lower variabilities compared to simulations with fdrai ≥ 0.4
(Fig. 1a). Lower fdrai can lead to unrealistically high subsur-
face runoff according to the exponential function of baseflow
drainage (Eq. 8) for the arid regions, where the precipita-
tion is not enough to maintain the water table at a reasonable
level. Such simulations with fdrai < 0.4 result in high nonlin-
earity in the simulated runoff, and hence, the PCE-based sur-
rogate model cannot capture the model behaviors (Fig. 1b).
The performance of surrogate models is improved by con-
straining the lower bound of fdrai to 0.4 (Fig. 1c). Therefore,
fdrai is refined as [0.4, 5] for areas that are identified as arid
climate in the Köppen climate classification (Fig. S1 in the
Supplement), and [0.1, 5] is used in other regions.

5.2 Validation of surrogate models

The PCE-based surrogate models can mimic the variations in
RMSE between ELM-simulated runoff and the GRUN runoff
with the truncated order determined in Fig. S2. Specifically,
the surrogate models exhibit good performance for the vali-
dation simulations with RE< 0.1 for 70 % of the global do-

main (Fig. 2a). The global averaged RE of surrogate models
for the validation simulations is around 0.1, with the largest
error over the arid regions (Fig. 2b). While 41 % of the arid
region shows an acceptable performance in the surrogate
models when narrowing the range of fdrai with RE less than
0.15, the RE of other arid areas remain high (Fig. 2a). Addi-
tional simulations were performed to investigate if the lower
performance of surrogate models for arid regions is due to
insufficient number of training simulations. We randomly se-
lected 20 grid cells from the arid region and ran 2000 ELM
simulations with random samples from the parameter pri-
ors, as summarized in Table 1. The RE of surrogate models
for the 20 grid cells remained large (e.g., RE> 0.2), even as
the number of training simulations were increased (Fig. S3).
Thus, the lower performance of surrogate models over the
arid regions is not dependent on the number of training sim-
ulations.

Most surrogate models with large RE are in extremely dry
arid regions; for example, RE> 0.2 are mainly from grid
cells with annual runoff < 0.05 mm d−1 (Fig. 3). The RE of
surrogate models tends to decrease for areas with relatively
higher annual runoff that are still from arid regions (annual
runoff < 0.5 mm d−1 in Fig. 3). However, the runoff uncer-
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Figure 2. Relative norm 2 error of the surrogate models for the validation simulations. Panel (a) shows the spatial distribution of the errors,
and panel (b) shows the average errors for the grid cells in each climate defined by Köppen climate classification.

Figure 3. Plot of relative norm 2 error (RE) of surrogate models
for the validation simulations vs. averaged annual runoff magnitude
with all the grid cells from the arid region.

tainty in extremely dry areas will have negligible impact on
the global water cycle. Surrogate model with RE> 0.15 is
considered as not sufficiently accurate, and such grid cells
are excluded in the sensitivity analysis presented next.

5.3 Global sensitivity analysis

The most significant ELM parameters identified for runoff
generation are fover, fdrai, ψs, fc, and �, based on the spa-
tial distribution of the main Sobol’ indices (Fig. 4), while
the other six parameters have negligible contributions to the
runoff variations (Fig. S4). In equatorial regions, fdrai and
fover are equally sensitive and account for 39 % and 36 %
of the average runoff variations, respectively, as indicated by
the size of circles in Fig. 5a, while ψs is the secondary sensi-
tive parameter. For the arid regions, fdrai is the most sensitive
parameter, and fover, fc, Ks, and ψs are secondary sensitive
parameters with a similar value for the main Sobol’ indices
(Fig. 5b). Although other parameters show negligible main
Sobol’ indices for arid regions, they have shown sensitivities
when interacting with each other, as denoted by the thick-
ness of the lines between each pair of parameters in Fig. 5b.
The complex joint sensitivity results in high nonlinearity in
the runoff variations, representing a possible reason for the
poor performance of PCE for arid regions. The most signifi-
cant uncertain parameters for the warm temperate region are
the same as those for the equatorial region (Fig. 5c). Snow
and polar climates have similar sensitivity pattern, with fc
and � being the two most important uncertain parameters
(Fig. 5d and e). In colder regions, the contribution of surface
water storage drainage, which is controlled by fc, is large
to the total runoff because of prominent surface water areas
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(Pekel et al., 2016). The hydraulic conductivity and ground-
water drainage when ice is present in the soil is controlled by
�, which has a significant impact on runoff-generation pro-
cess when the soil is partial or fully frozen. The surface water
storage and ice impedance factor, which were not included in
the version of the model used in previous study (Hou et al.,
2012; Huang et al., 2013), are found to be the most sensitive
parameters in cold regions. Besides the arid region, other re-
gions show smaller sensitivities to parameter interactions.

5.4 Parameter dimensionality reduction

The ELM simulated runoff is significantly sensitive to three
or fewer parameters with Sobol’ index > 0.05 for 81.3 % of
the total grid cells (Fig. S5). Therefore, we sampled only
the three most sensitive parameters in each grid cell in the
Markov chain Monte Carlo (MCMC) process to perform pa-
rameter inference, as mentioned in Sect. 3.3. The posteri-
ors of the three calibrated parameters (fdrai, fover, ψs) at an
example grid cell (56.75◦W, 11.25◦ S) are much more con-
strained than the priors after the MCMC simulation with the
surrogate model (Fig. 6a, b, and c). The third parameter, ψs,
has a relatively wider posterior than the first two parame-
ters because its sensitivity is much smaller (e.g., Sobol’ in-
dex= 0.08). The Gelman–Rubin R statistic of Gelman and
Rubin (1992) computed with five MCMC chains (after the
burn-in period) is 1.002, 1.004, and 1.003 for fdrai, fover,
and ψs, respectively, suggesting that our MCMC simulation
has converged (see the convergence curve in Fig. S6). ELM
simulations with a large number of samples from parameter
priors are needed to identify the optimal parameter that min-
imizes RMSE; for example, 10 000 surrogate simulations are
used to find the parameters that yield RMSE= 1 (Fig. 6d).
In contrast, due to the reduced parameter dimensionality and
narrowed range, much fewer samples (e.g., 100) are needed
to find the better parameter values (e.g., corresponding to
RMSE< 1) when they are sampled from the parameter pos-
teriors (Fig. 6d). The spatial distribution of the parameter val-
ues at 5 % and 95 % of the posteriors is shown in Figs. S7 and
S8, respectively.

5.5 Optimal parameter values

The procedure described in Sect. 3.5 is used to find the opti-
mal parameter values for the three most sensitive parameters
for each grid cell. For the grid cells with RE> 0.15 for surro-
gate models, the optimal parameter value is determined from
the training and validation simulations (e.g., 200 simulations
with random parameter values from priors) that yield min-
imum RMSE. The optimal parameter values show clear re-
gional patterns (Fig. 7). Specifically, the optimal fover tends
to be lower than the default value for the equatorial and par-
tial snow areas (Fig. 7a). The optimal fover is found to be
higher than the default value for the arid areas, while it is
around the default value on average for the warm temperate

areas (Fig. 7a). For the same water table depth, lower fover
leads to higher saturation fraction (Eq. 3), that in turn leads
to larger surface runoff (Eq. 2). The calibrated fdrai is lower
than the default value for both equatorial and arid regions
(Fig. 7b). The optimal fdrai for warm temperate areas show
different patterns, with higher values over eastern USA and
Europe but lower values over southeastern China. The gen-
eration of subsurface runoff depends on fdrai (Eq. 8), with
lower fdrai leading to larger subsurface runoff. ψs affects
the runoff generation through its impact on soil water move-
ment, such as the soil water flux being larger at saturation
with higher ψs. As shown in Fig. 7c, higher ψs are needed
to minimize the RMSE for all regions that show sensitivity
to this parameter, except for some grid cells from polar area.
Over the high latitudes of Northern Hemisphere, higher fc
and lower� are found in the optimal parameters (Fig. 7d, e).
The surface water storage can store more water at higher fc
by reducing surface water runoff (Eqs. 4, 7), thus leading to
a lower and delay peak runoff than the default values. Fur-
thermore, the lower � values have fewer impacts of ice on
hydraulic conductivity (Eq. 7.89 in Olson et al., 2016) and
drainage (Eq. 9), leading to higher runoff for the winter sea-
sons.

5.6 Evaluation of ELM with the optimal parameters

The ELM-simulated runoff with the optimal parameter val-
ues shows improved skills of capturing the spatiotemporal
variation in monthly runoff at a global scale with higher NSE
and KGE compared to the simulation with default parameter
values (Fig. 8). Specifically, the median of NSE and KGE
from all global grid cells increases from −0.88 and −0.05
to 0.06 and 0.31, respectively. Over the western USA coast,
southeast and midwest of USA, western Europe, and equa-
torial areas, the performance of the calibrated ELM is better
with NSE> 0.5 and KGE> 0.7. While the performance of
other areas (e.g., western USA, Sahara and Arabian desert,
central and eastern Asia, and partial high latitude regions)
is improved compared to simulations with the default pa-
rameter values, the NSE and KGE still have negative val-
ues. The higher model errors in those regions cannot be re-
solved by calibration as (1) the simulation resolution is too
coarse to resolve the topographic impacts (Chegwidden et al.,
2020), (2) the snow-melting processes are not calibrated in
this study, and the onset of snowmelt in ELM is poorly rep-
resented (Toure et al., 2018), and (3) the hydrology of arid
areas is not well understood (Pilgrim et al., 1988). Except
for the calibration period, ELM with the optimal parameters
also shows an improved performance in runoff simulation for
another period (2011–2013; Fig. S9).

Compared to the reference runoff (Fig. 9a), the ELM sim-
ulation with default parameter values tends to overestimate
the sensitivity of runoff to precipitation (β in Eq. 24) for the
equatorial and arid regions but underestimates β in the warm
temperate regions, such as the eastern USA, China, and east-
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Figure 4. Spatial distribution of the main Sobol’ index for the sensitivity parameters.

Table 2. ILAMB benchmark scores for latent heat flux, sensible heat flux, evapotranspiration, and terrestrial water storage anomaly with
default and optimized parameters in ELM. A description of each score metric can be found at http://redwood.ess.uci.edu/CMIP6_bnchmrk1_
9_8/ (last access: 23 June 2021).

Variable Data Parameter Bias RMSE Seasonal Spatial Overall
source score score cycle distribution score

score score

Latent heat flux FLUXCOM Default 0.740 0.680 0.910 0.993 0.800
Optimal 0.730 0.677 0.909 0.992 0.797

Sensible heat flux FLUXCOM Default 0.682 0.643 0.932 0.940 0.768
Optimal 0.680 0.636 0.932 0.933 0.763

ET GLEAM3.3 Default 0.714 0.675 0.870 0.971 0.781
Optimal 0.705 0.672 0.873 0.967 0.778

TWSA GRACE Default 0.901 0.554 0.818 0.003 0.566
Optimal 0.900 0.545 0.817 0.004 0.562
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Figure 5. Averaged main Sobol’ index and joint Sobol’ index for
different climates defined by the Köppen climate classification.
Only the cells with the relative norm 2 errors of PCE-based sur-
rogate models for validating simulations of less than 0.15 are used
for estimating the averaged sensitivity for each climate region. The
size of the circles and thickness of the lines are proportional to main
Sobol’ index and joint Sobol’ index, respectively. The legend in the
right bottom subplot shows the Sobol’ index for the corresponding
size of circle and thickness of line.

ern coast of Australia (Fig. 9b). The simulation with optimal
parameter values is able to more accurately estimate β than
the simulation with default parameter values with improved
spatial correlation coefficient from 0.22 to 0.56 and lower
RMSE from 1.22 to 0.65 (Fig. 9c). However, some signifi-
cant discrepancy of β still exists in the simulation with opti-
mal parameter values (e.g., eastern China), implying that the
sensitivity is not well constrained in ELM for certain regions
even after model calibration.

According to the evaluation with the ILAMB package,
ELM shows a similar performance in simulating other vari-
ables (e.g., latent heat flux, sensible heat flux, ET, and
TWSA) with optimal parameter values compared to the use
of the default parameter values (Table 2). However, both the
default and optimal simulations fail to capture the spatial

variation in TWSA with a spatial distribution score of less
than 0.05. This is because the coarse resolution (e.g., sev-
eral hundred kilometers) of GRACE product (Seyoum et al.,
2019) cannot resolve the spatial variability in TWSA for our
model resolution.

5.7 Parametric uncertainty

The parameter priors listed in Table 1 result in significant un-
certainties in the total runoff, with the global average annual
runoff for 1991–2010 varying from 30 999–76 496 km3 yr−1

(Fig. 10a). After parameter inference, the uncertainty of the
runoff constructed using simulations with parameter pos-
teriors is constrained to 35 389–49 741 km3 yr−1. The con-
strained annual runoff uncertainty captures the reference
runoff (38 443 km3 yr−1) and is consistent with previous
global runoff studies (Schellekens et al., 2017; Rodell et al.,
2015; Clark et al., 2015; Haddeland et al., 2011). The simu-
lation with the optimal parameter values yields an averaged
global annual runoff of 42 156 km3 yr−1, overestimating the
reference runoff by 9.6 %. The overestimation is mainly from
the Amazon, Asia, and eastern Europe (Fig. 10b), and Ghiggi
et al. (2019a) reported a similar spatial bias pattern between
global hydrological model simulations in ISIMP2a. The sim-
ulation with the default parameter values shows smaller bi-
ases in terms of the annual runoff magnitude as compared to
the reference runoff data, with an overestimation of 5.3 % on
average. However, the smaller biases of annual runoff with
the default parameters are because of the canceling out of
the monthly errors to some extent. For example, the default
parameters tend to overestimate the runoff during the wet
periods but underestimate the runoff during the dry periods
in the Amazon basin (Fig. S10a). While the default simula-
tion shows higher RMSE and lower NSE at a monthly scale,
it yields smaller biases at an annual scale than the optimal
parameter (Fig. S10b). Therefore, the calibrated simulation
shows better performance in capturing the spatiotemporal
variability (higher NSE and KGE in Fig. 8b and e), but it
does not lead to a reduced bias at an annual scale. We further
acknowledge that 200 simulations with 11 random param-
eters may not be sufficient to capture the full variations in
simulated runoff.

The runoff uncertainties associated with parameters are
constrained significantly with the parameter posteriors at
basin scale as well (Fig. 11). Noticeably, the posterior un-
certainty of annual runoff is larger over the equatorial regions
(e.g., Paraná, the Amazon, Godavari River, and Congo River)
than other regions. The simulation with optimal parameter
values yields larger overestimation of total runoff compared
to the simulation using the default parameter values for the
selected basins, except for the Mississippi River, Godavari
River, and Loire basin (Table S1 in the Supplement). The rea-
son for the overestimations is that the optimal parameters are
determined by maximizing NSE at a monthly scale, which
cannot ensure that the annual runoff is appropriately con-
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Figure 6. Posteriors of (a) fdrai, (b) fover, and (c) ψs from parameter inference process at an example grid cell. Panel (d) shows the
probability density function (PDF) of RMSE evaluated with surrogate models forced by 100 samples from parameter posteriors and 10 000
samples from parameter priors.

strained. There exist significant discrepancies between simu-
lations and GRUN for basins located at high latitudes (e.g.,
Mackenzie, Volga, Ob, Yenisei, and Lena rivers) even when
the posterior uncertainties are considered (Fig. 11), high-
lighting the importance of snow-melting processes in snow-
dominated regions. However, the large difference between
ELM and the reference runoff in Yangtze River basin may
be caused by the bias of the reference runoff since a previous
study reported annual discharge to be around 900 km3 yr−1

(Yang et al., 2015).
Despite being constrained by the parameter inference pro-

cess, the parametric uncertainty of ELM-simulated annual
runoff is considerable. Specifically, the posterior uncertainty
of global runoff simulated by ELM is comparable to that of
the multimodel ensemble constructed with the 13 global hy-
drological models from ISIMIP2a (Fig. 12a). The parametric
uncertainty affects not only the magnitude of global runoff
but also the trend for the simulation period during which a
rapid increase in temperature has occurred (Fig. S11a). The
Sen’s slope (Sen, 1968) for the reference runoff data is found
to be 54.7 km3 yr−1, but this increasing trend is not signif-
icant according to the Mann–Kendall test (Fig. 12b). Other
studies also reported no significant changes in the global
runoff with observed streamflow data (Alkama et al., 2013;

Dai et al., 2009; Milliman et al., 2008; Alkama et al., 2011).
However, the default and calibrated ELM simulations yielded
the Sen’s slope to be 188.9 and 133.8 km3 yr−1, respectively.
Although the Sen’s slope is reduced with the optimal param-
eters, the increasing trend remains significant. Likewise, all
the other global hydrological models of ISIMIP2a exhibit
significant increasing trend in the annual runoff, with the
Sen’s slope varying from 93 to 272 km3 yr−1 (Fig. 12b). Con-
sidering that the GRUN dataset and all model simulations
are forced by the same atmosphere forcing (i.e., GSWP3),
the differences in the global runoff trends can be attributed
to the model structural/parametric uncertainty. We note that
there exists a significant trend in GSWP3 precipitation at
a global scale, with an increase of 246.1 km3 yr−1 during
the simulation period (Fig. S11b). But it remains unclear
how the runoff responds to the increase in precipitation at
a global scale because the concurrent increased temperature
(Fig. S11a) leads to more ET, which can potentially balance
the increased precipitation to some extent. The inconsistency
of the global runoff trend between the model simulations and
observation-based data can be caused by uncertainties of dif-
ferent sources. For example, the accuracy of GRUN is lim-
ited by the coverage of the streamflow gauges, as over half
of the global areas are ungauged (Alkama et al., 2013). The
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Figure 7. Optimal values for the sensitive parameters. The default values for the parameters are defined at the midpoint of the color map.
There are no certainty bounds for ψs from different grid cells because it is determined by the soil properties. Therefore, the values of ψs are
scaled to [−1, 1] in panel (c) for each grid cell with the corresponding upper bound (ψs,max) and lower bound (ψs,min):

2
ψs,max−ψs,min

ψs−

ψs,max+ψs,min
ψs,max−ψs,min

.

model parametric uncertainty is significant, as ELM simula-
tions with parameters posteriors show a wide range of annual
runoff trend, from no trend to a significant increasing trend
(Fig. 12b). This highlights the necessity of including para-
metric uncertainty in future runoff projections, since runoff
trend is not well constrained even if the model performance
in the control period is improved.

6 Limitations

We note there can be other better choices of priors for the
parameter whose range covers several orders of magnitude.

For example, sampling qdrai,max on a uniform distribution
(e.g., U [10−610−1

]) results in fewer prior samples with val-
ues less than 10−2. A log-transformed uniform distribution
can be a good alternative to guarantee enough samples over
each range of the desired values. Using a log-transformed
uniform distribution for qdrai,max prior does not impact our
results significantly because the simulated runoff is not sensi-
tive to qdrai,max (Fig. S4), and more samples over smaller val-
ues of qdrai,max will not lead to more variation in runoff. How-
ever, careful selection of prior distributions can be important
for sensitive parameters in a future application of surrogate-
assisted calibration framework.
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Figure 8. Evaluation of simulated monthly runoff for 1991–2010 at grid level with default and optimal parameters. Panels (a) and (b) show
the NSE metrics between the GRUN runoff and simulated runoff with default and optimal parameters, respectively. Panel (c) shows the
comparison of the probability density function (PDF) of NSE metrics from all the global grid cells. Panels (d), (e), and (f) illustrate the
evolution with the KGE metric.

By using RMSE instead of the simulated runoff as the QoI,
only one PCE-based surrogate model is constructed for each
grid cell to represent the ELM performance of simulating a
monthly runoff time series. Although selecting RMSE as QoI
significantly reduces the computational burden of the surro-
gates’ construction and parameter inference, the correspond-
ing surrogates cannot be used to estimate posterior uncer-
tainty of physical model outputs. For example, we still need
to run ELM simulations after the parameter inference to con-
struct the runoff posterior uncertainty (Sect. 3.5). Addition-
ally, the objective of this study is to minimize RMSE at a
monthly scale; hence, an improved model performance at an
annual scale is not guaranteed. Including both monthly and
annual performance metrics in objective function may bal-
ance the performance at different temporal scales. However,
only one objective is accepted in the Uncertainty Quantifica-
tion framework used in this study.

We further acknowledge the poor performance of PCE-
based surrogate model in capturing the ELM-simulated
runoff over extremely arid regions (Figs. 2 and 3). This can
be attributed to the limitation of polynomial-based surrogate
models in capturing highly non-smooth or strongly nonlin-
ear relationships. Machine learning algorithms (Dagon et al.,

2020) and deep neural networks (Tsai et al., 2021) are alter-
native techniques for surrogate modeling, which are better at
capturing non-smooth or nonlinear functions, but future re-
search is needed to investigate the capability.

The calibrated parameters have a significant impact on
baseflow index, which is the ratio between subsurface runoff
and total runoff. For example, the baseflow of Amazon basin
with default and optimal parameters are 0.53 and 0.70, re-
spectively (Fig. S12). Mortatti et al. (1997) reported the base-
flow index of the Amazon basin to be 0.70 with the isotopic
tracer method, which is consistent with our simulation with
optimal parameter values. However, accurate separation of
surface runoff and subsurface runoff over other regions is
not guaranteed, though the total runoff has been calibrated
to match with the reference runoff dataset. The global base-
flow index dataset of Beck et al. (2013) that derived from ob-
served streamflow provides us the benchmark for evaluating
the baseflow index simulated in ELM. Constraining the base-
flow index during the ELM validation and calibration study
will be investigated in the future.

We further note that uncertainty in the reference runoff
data of GRUN used in the parameter inference is inevitable.
While Ghiggi et al. (2019a) found that GRUN outperformed
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Figure 9. Sensitivity of runoff to precipitation (β) estimated from the (a) GRUN runoff dataset, (b) ELM simulation with default parameter,
and (c) ELM simulation with optimal parameter. The inserts show the scatterplots with density for cell-to-cell comparison of β between
GRUN and ELM simulations.

other global hydrological models and multimodel ensemble,
lower accuracy over mountainous regions due to the coarse
resolution has been reported. Additionally, the irrigation and
water management impacts on streamflow was included for
some regions during the training process of GRUN (Ghiggi et
al., 2019a), but irrigation and water management are not ac-
tive in the ELM configuration used in this study. This incon-
sistency may explain the significant overestimation of ELM
simulated runoff compared to GRUN for certain regions, for
example, the Yangtze River basin (Fig. 10).

Another limitation of this study is that the snow-melting
processes were not calibrated. A poor representation of the
snow-melting process can result in the poor skill of runoff
generation in snow-dominant regions, where snowmelt is
an important contribution to runoff (Jenicek and Ledvinka,

2020). This could explain the low performance (i.e., nega-
tive NSE) of calibrated ELM over the Northern Hemisphere’s
high latitudes and mountainous regions. However, including
parameterizations of snow processes such as snow albedo,
solar absorption, and snow aging (Lawrence et al., 2011) can
introduce more uncertain parameters, which will make cali-
bration more challenging (Huang et al., 2013). In the future, a
dedicated calibration on the snow-melting process is needed
to improve the runoff generation in snow-dominated regions.

7 Conclusion

In this study, we applied an UQ framework to calibrate the
runoff-generation-relevant parameters in the ELM v1 using
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Figure 10. (a) Annual global runoff from default ELM simulation, optimal ELM simulation, and GRUN runoff dataset for the simulation
period (1991–2010). The red and blue shade areas represent the uncertainties constructed from the simulations with the parameter sampled
on priors and posteriors, respectively. Panel (b) shows the absolute difference in annual average runoff between ELM simulation with optimal
parameter and GRUN runoff data.

an observation-based runoff dataset as the benchmark. The
parameters with higher sensitivity are identified through the
sensitivity analysis with the PCE-based surrogate models.
While different sensitivity patterns are found for different re-
gions, 81.3 % of the global cells show significant sensitivities
to 3 or fewer parameters of the 11 selected parameters. The
results of our sensitivity analysis are consistent with those of
previous studies over the North American continent (Huang
et al., 2013; Sun et al., 2013), with runoff showing the largest
sensitivity to the subsurface runoff parameter. The Bayesian
posterior distribution of the highly sensitive parameters at
each grid cell is estimated with MCMC simulations, using
the surrogate model to construct the likelihood function. Ad-
ditional ELM simulations with parameter samples from the
posterior run to estimate the optimal parameter values and
construct the parametric uncertainty for the simulated runoff.
While the optimal parameter values improve the model per-
formance of runoff significantly, the parametric uncertainty
is comparable to the uncertainty in a multimodel ensemble

in ISIMIP2a, which is appreciable. Furthermore, the param-
eters are found to impact the annual global runoff trend for
our simulation period. Specifically, the simulations with pa-
rameter posteriors show a wide range of the annual runoff
trends at a global scale, from no trend to a significant in-
creasing trend. In summary, parameter calibration is neces-
sary to improve model performance, and parametric uncer-
tainties should be considered for comprehensive analysis of
runoff and its projections.

Code and data availability. The current version of ELM is avail-
able from E3SM project (https://github.com/E3SM-Project/
E3SM/releases/tag/v1.1.0, last access: 24 June 2022).
The UQTk code and documentation are available from
https://www.sandia.gov/uqtoolkit/ (last access: 24 June 2022).
The exact version of ELM, exact version of UQTk source
code, and scripts to produce the plots in this study are
archived on Zenodo (https://doi.org/10.5281/zenodo.5815500,
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Figure 11. Annual runoff at basin scale from the default ELM simulation, optimal ELM simulation, and GRUN runoff dataset for the
simulation period (1991–2010). The red and blue shaded areas represent the uncertainties constructed from the simulations with parameter
sampled on priors and posteriors, respectively.

Figure 12. (a) Annual global runoff from 13 global hydrological models participated in ISIMIP2a and ELM simulated runoff uncertainty
constructed using simulations with parameter posteriors. (b) Sen’s slope for the global annual runoff for the GRUN runoff dataset and
simulations. The violin plots (Hintze and Nelson, 1998) are generated with Sen’s slope of ELM simulations with parameter posteriors. The
white point is the median value, and the gray line represents range of the 25 %–75 % percentile. The MATLAB function of Bechtold (2016)
was used to create the violin plot. The cross signs are the Sen’s slopes estimated from the ISIMIP2a model simulations.

Geosci. Model Dev., 15, 5021–5043, 2022 https://doi.org/10.5194/gmd-15-5021-2022



D. Xu et al.: Runoff-generation scheme calibrations in E3SM 5039

Xu, 2022a). MATLAB version R2019b update 4 was used
to run the processing and plotting scripts. ILAMB version 2
was used in this study, and the package can be accessed
at https://doi.org/10.18139/ILAMB.v002.00/1251621 (Col-
lier et al., 2018). The domain file and surface data file that
used to run ELMv1, and processed ISIMP2a runoff data are
archived on Zenodo (https://doi.org/10.5281/zenodo.5815730,
Xu, 2022b). The GRUN runoff dataset was downloaded from
https://doi.org/10.6084/m9.figshare.9228176 (Ghiggi et al.,
2019b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-5021-2022-supplement.
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